Ultrashort electromagnetic pulse control of intersubband quantum well transitions

نویسندگان

  • Emmanuel Paspalakis
  • John Boviatsis
چکیده

: We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultraslow bright and dark solitons in semiconductor quantum wells

We study the low-intensity light pulse propagation through an asymmetric double quantum well via Fanotype interference based on intersubband transitions. The propagation of the pulse across the quantum well is studied analytically and numerically with the coupled Maxwell-Schrödinger equations. We show the generation of ultraslow bright and dark optical solitons in this system. Whether the solit...

متن کامل

Control of photoassociation yield : A quantum - dynamical study of the mercury system to explore the role of pulse duration from nanoseconds to femtoseconds

The photoassociation process shows strong dependence on the temporal duration of the electromagnetic eld pulses and their frequencies. This dependence is investigated using quantum mechanical simulations that include all ranges of impact parameters and contributions from bound-to-bound transitions. The photoassociation yield of mercury atoms to produce excimer dimers is enhanced for short (ps) ...

متن کامل

Improved Active Region Designs for Mode Locking in Quantum Cascade Lasers

Quantum cascade lasers (QCLs) have progressed rapidly due to their intrinsic design potential [1]. These unipolar semiconductor lasers are based on intersubband transitions in multiple quantum-well structures. The design of alternating wells and barriers make QCLs a unique candidate to serve as a semiconductor source of ultra-short pulses in the mid-infrared region [2]. Ultrashort pulses which ...

متن کامل

Ultrafast all-optical switching with low saturation energy via intersubband transitions in GaN/AlN quantum-well waveguides.

A fiber-optic pump-probe setup is used to demonstrate all-optical switching based on intersubband cross-absorption modulation in GaN/AlN quantum-well waveguides, with record low values of the required control pulse energy. In particular, a signal modulation depth of 10 dB is obtained with control pulse energies as small as 38 pJ. Such low power requirements for this class of materials are mainl...

متن کامل

Quantum Confinement in High Electron Mobility Transistors

Modulation-doped semiconductor nanostructures exhibit extraordinary electrical and optical properties that are quantum mechanical in nature. The heart of such structures lies in the heterojunction of two epitaxially grown semiconductors with different band gaps. Quantum confinement in this heterojunction is a phenomenon that leads to the quantization of the conduction and the valence band into ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012